Three sequential properties of dual Banach spaces in the weak* topology
نویسندگان
چکیده
منابع مشابه
Weak∗ closures and derived sets in dual Banach spaces
The main results of the paper: (1) The dual Banach space X∗ contains a linear subspace A ⊂ X∗ such that the set A of all limits of weak∗ convergent bounded nets in A is a proper norm-dense subset of X∗ if and only if X is a non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual. (2) Let X be a non-reflexive Banach space. Then there exists a convex subse...
متن کامل$(-1)$-Weak Amenability of Second Dual of Real Banach Algebras
Let $ (A,| cdot |) $ be a real Banach algebra, a complex algebra $ A_mathbb{C} $ be a complexification of $ A $ and $ | | cdot | | $ be an algebra norm on $ A_mathbb{C} $ satisfying a simple condition together with the norm $ | cdot | $ on $ A$. In this paper we first show that $ A^* $ is a real Banach $ A^{**}$-module if and only if $ (A_mathbb{C})^* $ is a complex Banach $ (A_mathbb{C})^{...
متن کاملWeak amenability of (2N)-th dual of a Banach algebra
In this paper by using some conditions, we show that the weak amenability of (2n)-th dual of a Banach algebra A for some $ngeq 1$ implies the weak amenability of A.
متن کاملSequential Properties of Function Spaces with the Compact-open Topology
Let M be the countably infinite metric fan. We show that Ck(M, 2) is sequential and contains a closed copy of Arens space S2. It follows that if X is metrizable but not locally compact, then Ck(X) contains a closed copy of S2, and hence does not have the property AP. We also show that, for any zero-dimensional Polish space X, Ck(X, 2) is sequential if and only if X is either locally compact or ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2015
ISSN: 0166-8641
DOI: 10.1016/j.topol.2015.04.017